Skip to content
- Introduction
- Section 1: Geometric Quantities
- Deterrmnant Fomrula
- Section 2: Scalar Products
- Section 3: Interior Multiplication
- Section 4: Tensor Analysis
- Geometric Quantities
- Scalar Products
- Interior Multiplication
- Tensor Analysis
- Lie Derivatives
- Flows
- Covariant Differentiation
- Parallel Transport
- Curvature
- Semiriemannian Manifolds
- The Einstein Equation
- Decomposition Theory
- Bundle Valued Forms
- The Structural Equations
- Transition Generalities
- Metric Considerations
- Submanifolds
- Extrinsic Curvature
- Hodge Conventions
- Star Formulae
- Metric Concomitants
- Lagrangians
- The Euler-Lagrange Equations
- The Helmholtz Condition
- Applications of Homogeneity
- Questions of Uniqueness
- Globalization
- Functional Derivatives
- Variational Principles
- Splittings
- Metrics on Metrics
- The Symplectic Structure
- Motion in a Potential
- Constant Lapse, Zero Shift
- Variable Lapse, Zero Shift
- Incorporation of the Shift
- Dynamics
- Causality
- The Standard Setup
- Isolating the Lagrangian
- The Momentum Form
- Elimination of the Metric
- Constraints in the Coframe Picture
- Evolution in the Coframe Picture
- Computation of the Poisson Brackets
- Field Equations
- Lovelock Gravity
- The Palatini Formalism
- Torsion
- Extending the Theory
- Evolution in the Palatini Picture
- Expansion of the Phase Space
- Extension of the Scalars
- Selfdual Algebra
- The Selfdual Lagrangian
- Two Canonical Transformations
- Ashtekar’s Hamiltonian
- Evolution in the Ashtekar Picture
- The Constraint Analysis
- Densitized Variables
- Rescaling the Theory
- Asymptotic Flatness
- The Integrals of Motion-Energy and Center of Mass
- The Integrals of Motion-Linear and Angular Momentum
- Modifying the Hamiltonian
- The ~oincarg Structure
- Function Spaces
- Asymptotically Euclidean Riemannian Structures
- Laplacians
- Positive Energy