general relativity – robert m wald

  • PART I – FUNDAMENTALS
    • Introduction
      • Introduction
      • Space and Time in Pre-Relativity Physics and in Special Relativity
      • The Spacetime Metric
      • The Spacetime Metric
      • General Relativity
    • Manifolds and Tensor Fields
    • Curvature
    • Einstein’s Equation
    • Homogeneous, Isotropic Cosmology
    • The Schwarzschild Solution
      • Derivation of the Schwarzschild Solution
      • Interior Solutions
      • Geodesics of Schwarzschild: Gravitational Redshift, Perihelion Precession, Bending of Light, and Time Delay
      • The Kruskal Extension
  • PART II – ADVANCED TOPICS
    • Methods for Solving Einstein’s Equation
      • Stationary, Axisymmetric Solutions
    • Causal Structure
    • Singularities
    • The Initial Value Formulation
    • Asymptotic Flatness
    • Black Holes
    • Spinors
      • Spinors in Minkowski Spacetime
      • Spinors in Curved Spacetime
    • Quantum Effects in Strong Gravitational Fields
  • APPENDICES
    • A. Topological Spaces
    • B. Differential Forms, Integration, and Frobenius’s Theorem
      • B1. Differential Forms
    • C. Maps of Manifolds, Lie Derivatives, and Killing Fields
    • D. Conformal Transformations
    • E. Lagrangian and Hamiltonian Formulations of Einstein’s Equation